$\mathcal{S U B I} \mathcal{E C T}: \mathcal{M A T H E E M A T}$ ICS
CLASS : XII

General Instruction:

1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks
2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions
3. Both Part A and Part B have choices.

Part - A:

1. It consists of two sections- I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains $\mathbf{2}$ case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any $\mathbf{4}$ out of $\mathbf{5}$ MCQs.

Part - B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 questions of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of $\mathbf{5}$ marks each.

PART - A
 SECTION-I
 Questions 1 to 16 carry 1 mark each.

1. Check whether $f(x)=\tan x$ is one-one or not on R.
2. Find the domain of $f(x)=\sin ^{-1}\left(-x^{2}\right)$.
3. If A is a matrix of order 3×3 such that $|A|=4$, find $\left|A^{-1}\right|$.
4. Find the value of $\cot \left(\frac{\pi}{3}-2 \cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$
5. If for the matrix $A, A^{3}=I$, then find the value of A^{-1}.
6. If $2 \mathrm{~A}+\mathrm{B}+\mathrm{X}=0$, where $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -2 \\ 1 & 5\end{array}\right]$, then find the value of matrix X .
7. Find the equation of the tangent to the curve $y=x^{2}+4 x+1$ at the point where $x=3$.
8. If $\mathrm{y}=7 \mathrm{x}^{3}-4 \mathrm{x}^{2}$, find $\frac{d y}{d x}$.
9. Evaluate: $\int \frac{d x}{x+x \log x}$
10. If A and B are events such that $P(A)=0.3, P(B)=0.6$ and $P(B / A)=0.5$, find $P(A / B)$.
11. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement then find the probability that both drawn balls are black.
12. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}$, then find the value of $(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})$.
13. Find the value of λ if the vectors $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{b}=\hat{j}+\lambda \hat{k}$ are perpendicular.
14. Write the cartesian equation of the plane whose vector equation is $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=7$.
15. Write the equation of line passing through the points $(-1,2,1)$ and $(3,1,4)$.
16. If $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then find the value of $|\vec{b}|$.

SECTION-II

Case study-based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark

17. A building has front gate has the figure as shown below:

It is in the shape of trapezium whose three sides other than base in 10 m . Height of the gate is ' h ' m.

On the basis of above figure answer the following questions:
(i) The relation between a and h is
(a) $\mathrm{x}^{2}+\mathrm{h}^{2}=10$
(b) $\mathrm{x}^{2}+\mathrm{h}^{2}=100$
(c) $h^{2}-x^{2}=10$
(d) $\mathrm{x}^{2}-\mathrm{h}^{2}=10$
(ii) The are of gate A expressed as a function of x is
(a) $(10+x) \sqrt{100+x^{2}}$
(b) $(10-x) \sqrt{100+x^{2}}$
(c) $(10+x) \sqrt{100-x^{2}}$
(d) $(10-x) \sqrt{100-x^{2}}$
(iii) The value of x when A is maximum is
(a) 5 m
(b) 10 m
(c) 15 m
(d) 20 m
(iv) The value of h when A is maximum is
(a) $5 \sqrt{2} \mathrm{~m}$
(b) $5 \sqrt{3} \mathrm{~m}$
(c) $10 \sqrt{2} \mathrm{~m}$
(d) $10 \sqrt{3} \mathrm{~m}$
(v) Maximum value of A is $\left(\mathrm{in}^{2} \mathrm{~m}^{2}\right.$) is
(a) $\frac{75 \sqrt{3}}{2}$
(b) $75 \sqrt{3}$
(c) $\frac{75 \sqrt{3}}{4}$
(d) 75
18. The probability distribution functions which shows the number of hours (X) a student study during lockdown period in a day, is given by (where $\mathrm{C}>0$)

\mathbf{X}	0	1	2
$\mathbf{P}(\mathbf{X})$	$3 \mathrm{C}^{3}$	$4 \mathrm{C}-10 \mathrm{C}^{2}$	$5 \mathrm{C}-1$

On the basis of above information answer the following questions:
(i) The correct equation for C is
(a) $3 C^{3}-10 C^{2}+C-2=0$
(b) $3 \mathrm{C}^{3}+10 \mathrm{C}^{2}+\mathrm{C}-2=0$
(c) $3 \mathrm{C}^{3}-10 \mathrm{C}^{2}+9 \mathrm{C}-2=0$
(d) None of these
(ii) The value of C is
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{6}$
(iii) $\mathrm{P}(\mathrm{X}<2)=$
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{6}$
(iv) $\mathrm{P}(\mathrm{X}=1)=$
(a) $\frac{2}{9}$
(b) $\frac{1}{9}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
(v) $P(X \geq 0)=$
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) 1
(d) 0

PART B
 SECTION - III

Questions 19 to 28 carry 2 marks each.
19. An urn contains 5 white and 8 white black balls. Two successive drawing of three balls at a time are made such that the balls are not replaced before the second draw. Find the probability that the first draw gives 3 white balls and second draw gives 3 black balls.
20. Find X and Y, if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
21. Examine the continuity of the function: $f(x)=\left\{\begin{array}{c}\frac{|x-4|}{2(x-4)}, x \neq 4 \\ 0 \quad, x=4\end{array}\right.$ at $\mathrm{x}=4$.
22. If $y=\frac{1}{\sqrt{a^{2}-x^{2}}}$, then find $\frac{d y}{d x}$.
23. Find the value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)-2 \sec ^{-1}\left(2 \tan \frac{\pi}{6}\right)$.
24. Given $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, then find $|\vec{a} \times \vec{b}|$.
25. If $\mathrm{x}=10(t-\sin t), \mathrm{y}=12(1-\cos t)$, find $\frac{d y}{d x}$.
26. Find the equation of the tangent to the curve $y=-5 x^{2}+6 x+7$ at $(1 / 2,35 / 4)$.
27. Evaluate: $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
28. Two vectors \vec{a} and \vec{b}, prove that the vector $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is orthogonal to the vector $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$.

SECTION - IV

Q uestions 29 to 35 carry 3 marks each.

29. Let the function $f: R^{+} \rightarrow[4, \infty)$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$. Prove that f is bijective.
30. Find the particular solution of differential equation $\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$ for $x=1$ and y $=1$.
31. Evaluate: $\int_{0}^{\pi / 2} \log (\sin x) d x$
32. Find the volume of the largest cylinder that can be inscribed in sphere of radius ' r '.
33. Find the area of the region bounded by the line $y=3 x+2$, the x-axis and the ordinates $x=-1$ and $\mathrm{x}=1$.
34. Evaluate: $\int \frac{x^{2}}{x \sin x+\cos x} d x$
35. Find the point on the curve $y^{2}=2 x$ which is at a minimum distance from the point $(1,4)$.

SECTION - V
 Q uestions 36 to 38 carry 5 marks each.

36. Solve the LPP graphically maximize, $Z=1500(7 x+6 y)$ subject to constraints; $x+y \leq 50 ; 2 x+y \leq 80, x, y \geq 0$.
37. Find the equation of plane determined by points $\mathrm{A}(3,-1,2), \mathrm{B}(5,2,4), \mathrm{C}(-1 .-1,6)$ and hence find the distance between plane and point $\mathrm{P}(6,5,9)$.
38. Evaluate the product $A B$, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$. Hence solve the system of linear equations $\mathrm{x}-\mathrm{y}=3,2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=17$ and $\mathrm{y}+2 \mathrm{y}=7$.
