$\mathcal{S U B J} \mathcal{E C T}: \mathcal{M A T H E E M A T}$ ICS
CLASS : XII

General Instruction:

1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks
2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions
3. Both Part A and Part B have choices.

Part - A:

1. It consists of two sections- I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains $\mathbf{2}$ case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any $\mathbf{4}$ out of $\mathbf{5}$ MCQs.

Part - B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 questions of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of $\mathbf{5}$ marks each.

PART - A
 SECTION-I
 Questions 1 to 16 carry 1 mark each.

1. Show that $f(x)=x^{2}+2$ is not injective.

We have, $f(x)=x^{2}+2$
Let $x_{1}, x_{2} \in R$ such that

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \Rightarrow x_{1}^{2}+2=x_{2}^{2}+2 \\
& \Rightarrow x_{1}^{2}=x_{2}^{2} \Rightarrow x_{1}= \pm x_{2}
\end{aligned}
$$

$\therefore f(x)$ is not one-one.
2. For any matrix $A=\left[a_{i j}\right]$, if $c_{i j}$ denotes its cofactors then find the value of $a_{11} c_{12}+a_{12} c_{22}+a_{13} c_{32}$. Ans: Zero
3. Find the principal value of $\sec ^{-1}(-\sqrt{2})+\operatorname{cosec}^{-1}(-\sqrt{2})$

$$
\begin{aligned}
& \sec ^{-1}(-\sqrt{2})+\operatorname{cosec}^{-1}(-\sqrt{2}) \\
&=\left(\pi-\frac{\pi}{4}\right)+\left(-\frac{\pi}{4}\right)=\pi-\frac{\pi}{2}=\frac{\pi}{2}
\end{aligned}
$$

4. Check whether the relation R defined on the set $A=\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive.
The relation R on set $A=\{1,2,3,4,5,6\}$ is defined as
$R=\{(a, b): b=a+1\}$
$\therefore R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$
Clearly, $(a, a) \notin R$ for any $a \in A$. So, R is not reflexive.
5. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\mathrm{A}^{-1}=\mathrm{kA}$, then find the value of k .

We have, $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$
$\therefore|A|=2(-2)-3 \times 5=-19$
$\therefore \quad A^{-1}=\frac{-1}{19}\left[\begin{array}{cc}-2 & -3 \\ -5 & 2\end{array}\right]=\left[\begin{array}{cc}2 / 19 & 3 / 19 \\ 5 / 19 & -2 / 19\end{array}\right]$
Since, $\quad A^{-1}=k A$
$\Rightarrow\left[\begin{array}{cc}2 / 19 & 3 / 19 \\ 5 / 19 & -2 / 19\end{array}\right]=\left[\begin{array}{cc}2 k & 3 k \\ 5 k & -2 k\end{array}\right] \Rightarrow 2 / 19=2 k \Rightarrow k=\frac{1}{19}$
6. If A is a matrix of order 3×3 such that $|A|=5$, find $|A(\operatorname{adj} A)|$.

We have, $|A|=5$ and order of A is 3×3

$$
\text { Now, } \begin{aligned}
|A \operatorname{adj}(A)| & =|A||\operatorname{adj} A|=|A||A|^{3-1} \\
& =|A|^{3}=(5)^{3}=125
\end{aligned}
$$

7. Find the degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \frac{d y}{d x}$.

We have, $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right)$
Clearly, the degree of differential equation is not defined.
8. Evaluate: $\int \sin ^{2} \frac{x}{2} d x$

$$
\begin{aligned}
\int \sin ^{2} \frac{x}{2} d x & =\frac{1}{2} \int 2 \sin ^{2} \frac{x}{2} d x \quad \text { [multiply and divide by 2] } \\
& =\frac{1}{2} \int(1-\cos x) d x=\frac{1}{2} \int d x-\frac{1}{2} \int \cos x d x \\
& =\frac{1}{2} x-\frac{1}{2} \sin x+C
\end{aligned}
$$

9. Evaluate: $\int_{0}^{2} e^{[x]} d x$

$$
\text { Let } \begin{aligned}
I & =\int_{0}^{2} e^{[x]} d x=\int_{0}^{1} e^{[x]} d x+\int_{1}^{2} e^{[x]} d x \\
& =\int_{0}^{1} e^{0} d x+\int_{1}^{2} e^{1} d x \\
& =[x]_{0}^{1}+e[x]_{1}^{2}=(1-0)+e(2-1)=e+1
\end{aligned}
$$

10. If A and B are two independent events with $P(A)=3 / 5$ and $P(B)=4 / 9$, then find $P(\bar{A} \cap \bar{B})$.

We know that, if A and B are independent events, then
\bar{A} and \bar{B} are also independent.

$$
\begin{aligned}
\therefore P(\bar{A} \cap \bar{B}) & =P(\bar{A}) \cdot P(\bar{B})=(1-P(A))(1-P(B)) \\
& =\left(1-\frac{3}{5}\right)\left(1-\frac{4}{9}\right)=\frac{2}{5} \times \frac{5}{9}=\frac{2}{9}
\end{aligned}
$$

11. If E_{1} and E_{2} are two independent events such that $P\left(E_{1}\right)=0.35$ and $P\left(E_{1} \cup E_{2}\right)=0.60$, then find $\mathrm{P}\left(\mathrm{E}_{2}\right)$.
Let $P\left(E_{2}\right)=x$
Then, E_{1} and E_{2} being independent events, we have

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \times P\left(E_{2}\right)=0.35 x
$$

Now, $\quad P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)$

$$
\begin{aligned}
\Rightarrow \quad 0.60 & =0.35+x-0.35 x \Rightarrow 0.65 x=0.25 \\
\therefore \quad x & =\frac{0.25}{0.65}=\frac{5}{13}
\end{aligned}
$$

12. If the angle between the vectors $\hat{i}+\hat{k}$ and $\hat{i}-\hat{j}+\alpha \hat{k}$ is $\frac{\pi}{2}$, then find the value of α.

Let $\vec{a}=\hat{i}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\alpha \hat{k}$.
Since, \vec{a} and \vec{b} are perpendicular

$$
\begin{aligned}
& \therefore \quad \vec{a} \cdot \vec{b}=0 \Rightarrow(\hat{i}+\hat{k})(\hat{i}-\hat{j}+\alpha \hat{k})=0 \\
& \Rightarrow 1+\alpha=0 \Rightarrow \alpha=-1
\end{aligned}
$$

13. If $\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+3 \hat{k})$, then find the value of $|\vec{a}|$.

We have, $\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+0 \hat{j}+3 \hat{k})$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & -2 \\
-1 & 0 & 3
\end{array}\right|=(9-0) \hat{i}-(3-2) \hat{j}+(0+3) \hat{j}-\hat{j}+3 \hat{k} \\
& \therefore|\vec{a}|=\sqrt{9^{2}+(-1)^{2}+3^{2}}=\sqrt{91}
\end{aligned}
$$

14. If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$, then find projection of \vec{b} on \vec{a}.

Projection of \vec{b} on $\vec{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}=\frac{3}{2}$
15. Find the projection of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ and $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

We know that, projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
Here, $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$
$\therefore \quad \vec{a} \cdot \vec{b}=(7 \hat{i}+\hat{j}-4 \hat{k}) \cdot(2 \hat{i}+6 \hat{j}+3 \hat{k})=14+6-12=8$
and $|\vec{b}|=\sqrt{2^{2}+6^{2}+3^{2}}=\sqrt{4+36+9}=7$
Hence, projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{8}{7}$.
16. Find the value of λ if the vector $2 \hat{i}+\lambda \hat{j}-4 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are perpendicular.

Since $2 \hat{i}+\lambda \hat{j}-4 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are perpendicular

$$
\begin{array}{r}
\therefore(2 \hat{i}+\lambda \hat{j}-4 \hat{k}) \cdot(2 \hat{i}-\hat{j}+\hat{k})=0 \\
\Rightarrow 4-\lambda-4=0 \Rightarrow \lambda=0
\end{array}
$$

SECTION-II

Case study-based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark

17. In a test, you either guesses or copies or knows the answer to a multiple-choice question with four choice. The probability that you make a guess is $\frac{1}{3}$, you copy the answer is $\frac{1}{6}$. The probability that your answer is correct, given that you guess it, is $\frac{1}{8}$. And also, the probability that you answer is correct, given that you copy it, is $\frac{1}{4}$.

(i) The probability that you know the answer is
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

Ans: (c) $\frac{1}{2}$
(ii) The probability that your answer is correct given that you guess it, is
(a) $\frac{1}{2}$
(b) $\frac{1}{8}$
(c) $\frac{1}{6}$
(d) $\frac{1}{4}$

Ans: (b) $\frac{1}{8}$
(iii) The probability that your answer is correct given that you know the answer, is
(a) $\frac{1}{7}$
(b) 1
(c) $\frac{1}{9}$
(d) $\frac{1}{10}$

Ans: (b) 1
(iv) The probability that you know the answer given that you correctly answered it, is
(a) $\frac{4}{7}$
(b) $\frac{5}{7}$
(c) $\frac{6}{7}$
(d) None of these

Ans: (c) $\frac{6}{7}$
(v) The total probability of correctly answered the question, is
(a) $\frac{7}{12}$
(b) $\frac{11}{12}$
(c) $\frac{5}{12}$
(d) None of these

Ans: (a) $\frac{7}{12}$
18. A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to forms a box.

(i) The length, breadth and height of the box formed, in terms of x are
(a) $(24-2 x, x, 24-2 x)$
(b) $(24-2 x, 24-2 x, x)$
(c) $(x, 24-2 x, 24-2 x)$
(d) $(x, x, x$,

Ans: (b) (24-2x, 24-2x, x)
(ii) Volume V of the box expressed in terms of x is
(a) $(24-2 x)^{3}$
(b) x^{3}
(c) $x^{2}(24-2 x)$
(d) $x(24-2 x)^{2}$

Ans: (d) $\mathbf{x}(\mathbf{2 4}-\mathbf{2 x})^{\mathbf{2}}$
(iii) Maximum value of volume of box is
(a) $256 \mathrm{~cm}^{3}$
(b) $512 \mathrm{~cm}^{3}$
(c) $1024 \mathrm{~cm}^{3}$
(d) $2048 \mathrm{~cm}^{3}$

Ans: (c) $\mathbf{1 0 2 4} \mathrm{cm}^{3}$
(iv) The value of x when volume is maximum is
(a) 12 cm
(b) 8 cm
(c) 4 cm
(d) 2 cm

Ans: (c) $\mathbf{4 c m}$
(v) The cost of box, if rate of making the box is Rs. $5 \mathrm{per} \mathrm{cm}^{2}$, when volume is maximum is
(a) Rs. 2840
(b) Rs. 3840
(c) Rs. 2040
(d) Rs. 3480

Ans: (b) Rs. 3840

PART B
 SECTION - III

Questions 19 to 28 carry 2 marks each.

19. Find the values of ' a ' so that the function $f(x)$ is defined by $f(x)=\left\{\begin{array}{ll}\frac{\sin ^{2} a x}{x^{2}}, x \neq 0 \\ 1 \quad, x=0\end{array}\right.$ may be continuous at $\mathrm{x}=0$.
The function $f(x)$ will be continuous at $x=0$, iff

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=f(0) \\
\Rightarrow \lim _{x \rightarrow 0} \frac{\sin ^{2} a x}{x^{2}}=1 \quad[\because f(0)=1] \\
\Rightarrow a^{2} \lim _{x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)^{2}=1 \\
\Rightarrow a^{2}(1)^{2}=1 \\
\therefore \quad a= \pm 1
\end{gathered}
$$

Thus, $f(x)$ will be continuous at $x=0$, if $a= \pm 1$.
20. If $\left|\begin{array}{cc}x-2 & -3 \\ 3 x & 2 x\end{array}\right|=3$, then find the value of x .

$$
\begin{aligned}
& \left|\begin{array}{cc}
x-2 & -3 \\
3 x & 2 x
\end{array}\right|=3 \Rightarrow 2 x(x-2)+9 x=3 \\
& \Rightarrow 2 x^{2}-4 x+9 x-3=0 \\
& \Rightarrow 2 x^{2}+5 x-3=0 \Rightarrow x=\frac{1}{2},-3
\end{aligned}
$$

21. Evaluate: $\sec ^{-1} \sqrt{2}+2 \operatorname{cosec}^{-1}(-\sqrt{2})$.

Let $\sec ^{-1} \sqrt{2}=\theta_{1} \Rightarrow \sec \theta_{1}=\sqrt{2}$

$$
\Rightarrow \sec \theta_{1}=\sec \frac{\pi}{4} \Rightarrow \theta_{1}=\sec ^{-1} \sqrt{2}=\frac{\pi}{4}\left[\because \frac{\pi}{4} \in[0, \pi]-\left\{\frac{\pi}{2}\right\}\right]
$$

and $\operatorname{cosec}^{-1}(-\sqrt{2})=\theta_{2} \Rightarrow \operatorname{cosec} \theta_{2}=-\sqrt{2}$
$\Rightarrow \operatorname{cosec} \theta_{2}=-\operatorname{cosec} \frac{\pi}{4} \Rightarrow \operatorname{cosec} \theta_{2}=\operatorname{cosec}\left(-\frac{\pi}{4}\right) \Rightarrow \theta_{2}=\operatorname{cosec}^{-1}(-\sqrt{2})=-\pi / 4$

$$
\left[\because-\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}\right]
$$

$\therefore \sec ^{-1} \sqrt{2}+2 \operatorname{cosec}^{-1}(-\sqrt{2})=\frac{\pi}{4}+2\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4}$
22. Evaluate: $\int \frac{d x}{9 x^{2}+6 x+10}$.

Let $I=\int \frac{1}{9 x^{2}+6 x+10} d x=\frac{1}{9} \int \frac{1}{x^{2}+\frac{2}{3} x+\frac{10}{9}} d x$

$$
\begin{aligned}
& =\frac{1}{9} \int \frac{1}{x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}+\frac{10}{9}} d x \\
& =\frac{1}{9} \int \frac{1}{\left(x+\frac{1}{3}\right)^{2}+(1)^{2}} d x=\frac{1}{9} \times \frac{1}{1} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{1}\right)+C \\
& =\frac{1}{9} \tan ^{-1}\left(\frac{3 x+1}{3}\right)+C
\end{aligned}
$$

23. If $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$ and $\vec{b} \neq \vec{c}$, show that $\vec{b}=\vec{c}+t \vec{a}$ for some scalar t.

We have, $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$,

$$
\begin{aligned}
& \quad \Rightarrow \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=0 \Rightarrow \vec{a} \times(\vec{b}-\vec{c})=0 \Rightarrow \vec{a}=0 \\
& \\
& \text { or } \vec{b}-\vec{c}=0 \\
& \\
& \text { or } \vec{a} \|(\vec{b}-\vec{c}) \Rightarrow \vec{a}=0 \\
& \\
& \text { or } \vec{b}=\vec{c} \\
& \\
& \text { or } \vec{a} \|(\vec{b}-\vec{c}) \\
& \Rightarrow \vec{b}-\vec{c}
\end{aligned}=t \vec{a} \text { for some scalart. }[\because \vec{a} \neq 0 \text { and } \vec{b} \neq \vec{c}] \quad \text {. }
$$

$$
\Rightarrow \quad \vec{b}=\vec{c}+t \vec{a}
$$

24. A couple has two children. Find the probability that both children are males, if it is known that atleast one of the children is male.

Let A and B be the events that both children are male and atleast one children is male.
$\therefore P(A)=\frac{1}{4}, P(B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}$
Now, required probability, $P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
25. Evaluate: $\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x$

Let $\quad I=\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x$. Then,

$$
\begin{aligned}
& I=\int_{0}^{\pi / 4} \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} d x=\int_{0}^{\pi / 4} \sqrt{(\sin x+\cos x)^{2}} d x \\
& \Rightarrow I=\int_{0}^{\pi / 4}|\cos x+\sin x| d x=\int_{0}^{\pi / 4}(\cos x+\sin x) d x=[\sin x-\cos x]_{0}^{\pi / 4} \\
& \Rightarrow I=\left(\sin \frac{\pi}{4}-\cos \frac{\pi}{4}\right)-(\sin 0-\cos 0)=\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)-(0-1)=1
\end{aligned}
$$

26. If $\sec \left(\frac{x+y}{x-y}\right)=a$, prove that $\frac{d y}{d x}=\frac{y}{x}$.

We have, $\sec \left(\frac{x+y}{x-y}\right)=a \Rightarrow \frac{x+y}{x-y}=\sec ^{-1} a$
On differentiating both the sides, we get

$$
\frac{\left(1+\frac{d y}{d x}\right)(x-y)-(x+y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}}=0
$$

$\Rightarrow(x-y-x-y)+(x-y+x+y) \frac{d y}{d x}=0$
$\Rightarrow-2 y+2 x \frac{d y}{d x}=0 \Rightarrow 2 x \frac{d y}{d x}=2 y \Rightarrow \frac{d y}{d x}=\frac{y}{x}$
27. Show that the tangents to the curve $y=2 x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.

The equation of the curve is $y=2 x^{3}-3$
Differentiating with respect to x, we get $\frac{d y}{d x}=6 x^{2}$
Now, $m_{1}=$ (Slope of the tangent at $x=2$)

$$
=\left(\frac{d y}{d x}\right)_{x=2}=6 \times(2)^{2}=24
$$

and, $m_{2}=($ Slope of the tangent at $x=-2)$

$$
=\left(\frac{d y}{d x}\right)_{x=-2}=6(-2)^{2}=24
$$

Clearly, $m_{1}=m_{2}$
Thus, the tangents to the given curve at the points where $x=2$ and $x=-2$ are parallel.
28. Solve: $\frac{d y}{d x}=1-x+y-x y$

We have, $\frac{d y}{d x}=1-x+y-x y$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=(1-x)+y(1-x) \Rightarrow \frac{d y}{1+y}=(1-x) d x \\
& \Rightarrow \int \frac{d y}{1+y}=\int(1-x) d x \\
& \Rightarrow \log (1+y)=x-\frac{x^{2}}{2}+C
\end{aligned}
$$

SECTION - IV

Questions 29 to 35 carry 3 marks each.

29. Let the function $f: R^{+} \rightarrow[-9, \infty)$ given by $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{2}+6 \mathrm{x}-9$. Prove that f is bijective.

We have a mapping $f: R^{+} \rightarrow(-9, \infty)$
given by $f(x)=5 x^{2}+6 x-9$
For one-one Let $x_{1}, x_{2} \in R^{+}$be any arbitrary elements, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 5 x_{1}^{2}+6 x_{1}-9=5 x_{2}^{2}+6 x_{2}-9$
$\Rightarrow 5\left(x_{1}^{2}-x_{2}^{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 5\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[5\left(x_{1}+x_{2}\right)+6\right]=0$
$\Rightarrow x_{1}-x_{2}=0$ or $5 x_{1}+5 x_{2}+6=0$
$\Rightarrow x_{1}-x_{2}=0 \quad\left[\because 5 x_{1}+5 x_{2}+6 \neq 0\right.$ as $\left.x_{1}, x_{2} \in R^{+}\right]$
$\Rightarrow x_{1}=x_{2}$
So, f is one-one.
For onto Let $y \in(-9, \infty)$ be any arbitrary element and $y=f(x)$.
Then, $y=5 x^{2}+6 x-9 \Rightarrow 5 x^{2}+6 x-9-y=0$
$=x=\frac{-6 \pm \sqrt{36+4 \times 5(9+y)}}{10}\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]$
$\Rightarrow x=\frac{-6 \pm \sqrt{216+20 y}}{10} \Rightarrow x=\frac{-6 \pm 2 \sqrt{54+5 y}}{10}$
$\Rightarrow x=\frac{-3+\sqrt{54+5 y}}{5}$ or $x=\frac{-3-\sqrt{54+5 y}}{5}$
$\because x \in R^{+}$, therefore $x \neq \frac{-3-\sqrt{54+5 y}}{5}$
Now, $x=\frac{-3+\sqrt{54+5 y}}{5} \in R^{+}$for each $y \in(-9, \infty)$
$\because-9<y<\infty$
$\Rightarrow-45<5 y<\infty \quad$ [multiply each term by 5]
$\Rightarrow 54-45<+5 y<\infty \quad$ [add 54 in each term]
$\Rightarrow 9<54+5 y<\infty$
$\Rightarrow 3<\sqrt{54+5 y}<\infty \quad$ [taking square root]
$\Rightarrow-3+3<-3+\sqrt{54+5 y}<\infty$
[subtract -3 in each term]
$\Rightarrow-3+\sqrt{54+5 y}>0$
Thus, for each $y \in(-9, \infty)$, there exists

$$
x=\frac{-3+\sqrt{54-5 y}}{5} \in R^{+} \text {such that } f(x)=y
$$

So, f is onto.
30. Evaluate: $\int_{3}^{4} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{7-x}} d x$

Let $I=\int_{3}^{4} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{7-x}} d x$
Using $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ in Eq. (i), we get

$$
\begin{equation*}
I=\int_{3}^{4} \frac{\sqrt{3+4-x}}{\sqrt{3+4-x}+\sqrt{7-(3+4-x)}} d x=\int_{3}^{4} \frac{\sqrt{7-x}}{\sqrt{7-x}+\sqrt{x}} \tag{ii}
\end{equation*}
$$

On adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& 2 I=\int_{3}^{4} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{7-x}} d x+\int_{3}^{4} \frac{\sqrt{7-x}}{\sqrt{7-x}+\sqrt{x}} d x=\int_{3}^{4} \frac{\sqrt{x}+\sqrt{7-x}}{\sqrt{x}+\sqrt{7-x}} d x=\int_{3}^{4} d x=[x]_{3}^{4} \\
& \Rightarrow 2 l=[4-3]=1 \\
& \quad \therefore \quad I=\frac{1}{2}
\end{aligned}
$$

31. Find the solution of differential equation $x^{2} d y+y(x+y) d x=0$, if $x=1$ and $y=1$.

Given differential equation $x^{2} d y+y(x+y) d x=0$ can be written as $x^{2} d y+\left(x y+y^{2}\right) d x=0$
$\Rightarrow x^{2} d y=-\left(x y+y^{2}\right) d x$
$\Rightarrow \frac{d y}{d x}=-\left(\frac{y x+y^{2}}{x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=-\left(\frac{y}{x}\right)-\left(\frac{y}{x}\right)^{2}$.
which is a homogeneous, as $\frac{d y}{d x}=f\left(\frac{y}{x}\right)$.
On putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{aligned}
& \quad v+x \frac{d v}{d x}=-v-v^{2} \\
& \Rightarrow x \frac{d v}{d x}=-2 v-v^{2} \Rightarrow \frac{1}{2 v+v^{2}} d v=-\frac{1}{x} d x \\
& \Rightarrow \frac{1}{v(2+v)} d v=-\frac{1}{x} d x \Rightarrow \frac{2}{2 v(2+v)} d v=-\frac{1}{x} d x \\
& \Rightarrow \frac{1}{2}\left(\frac{1}{v}-\frac{1}{v+2}\right) d v=-\frac{1}{x} d x
\end{aligned}
$$

32. Find the area of region bounded by lines $y=\frac{5}{2} x-5, x+y-9=-0$ and $y=\frac{3}{4} x-\frac{3}{2}$.

Given lines are $y=\frac{5}{2} x-5$

$$
\begin{align*}
x+y & =9 \tag{ii}\\
\text { and } y & =\frac{3}{4} x-\frac{3}{2}
\end{align*}
$$

For finding the points of intersection, we solve in pairs.
On solving Eqs. (i) and (ii), we get
Coordinates of $C=(4,5)$
On solving Eqs. (ii) and (iii), we get
Coordinates of $B=(6,3)$
On solving Eqs. (i) and (iii), we get
Coordinates of $A=(2,0)$
\therefore Required area $=$ Area of $\triangle A N C+$ Area of quadrilateral $N C B D$ - Area of $\triangle A B D$ $=\int_{2}^{4}($ line $A C) d x+\int_{4}^{6}($ line $B C) d x-\int_{2}^{6}($ line $A B) d x$ $=\int_{2}^{4}\left(\frac{5}{2} x-5\right) d x+\int_{4}^{6}(9-x) d x-\int_{2}^{6}\left(\frac{3}{4} x-\frac{3}{2}\right) d x$
$=\left[\frac{5}{2} \cdot \frac{x^{2}}{2}-5 x\right]_{2}^{4}+\left[9 x-\frac{x^{2}}{2}\right]_{4}^{6}-\left[\frac{3}{4} \cdot \frac{x^{2}}{2}-\frac{3}{2} x\right]_{2}^{6}$

$$
\begin{aligned}
& =\frac{5}{4}\left[x^{2}\right]_{2}^{4}-5[x]_{2}^{4}+9[x]_{4}^{6}-\frac{1}{2}\left[x^{2}\right]_{4}^{6}-\frac{3}{8}\left[x^{2}\right]_{2}^{6}+\frac{3}{2}[x]_{2}^{6}= \\
& =\frac{5}{4}(12)-5(2)+9(2)-\frac{1}{2}(20)-\frac{3}{8}(32)+\frac{3}{2}(4) \\
& =15-10+18-10-12+6=|39-32|=7 \text { sq units }
\end{aligned}
$$

It is given that $y=1$, when $x=1$.

$$
\therefore \quad \frac{1}{1+2}=\left(\frac{C}{1}\right)^{2} \Rightarrow \frac{1}{3}=C^{2}
$$

Hence, the particular solution of the given differential equation is

$$
\begin{aligned}
& \quad \frac{y}{y+2 x}=\frac{\frac{1}{3}}{x^{2}} \Rightarrow \frac{y}{y+2 x}=\frac{1}{3 x^{2}} \\
& \therefore \quad 3 x^{2} y=y+2 x
\end{aligned}
$$

33. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.

Let $A B C$ be a triangle inscribed in a given circle with centre O and radius r.
The area of the triangle will be maximum if its vertex A opposite to the base $B C$ is at a maximum distance from the base $B C$.

This is possible only when A lies on the diameter perpendicular to $B C$. Thus, $A D \perp B C$. So, $\triangle A B C$ must be an isoscele triangle. Let $O D=x$.
On applying Pythagoras theorem in right angled $\triangle O D B$, we get

$$
\begin{aligned}
\text { get } & (O B)^{2}=(O D)^{2}+(B D)^{2} \\
\Rightarrow & r^{2}=x^{2}+(B D)^{2} \\
\Rightarrow & B D=\sqrt{r^{2}-x^{2}} \\
\therefore \quad & B C=2 B D=2 \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

Also, $A D=A O+O D=r+x$.

Let A denote the area of $\triangle A B C$.

$$
\begin{gathered}
\Rightarrow(r-2 x)(r+x)=0 \quad[\because r+x \neq 0] \\
\Rightarrow r-2 x=0 \Rightarrow x=\frac{r}{2}
\end{gathered}
$$

Now, $\frac{d A}{d x}=\frac{r^{2}-r x-2 x^{2}}{\sqrt{r^{2}-x^{2}}}$
$\Rightarrow \frac{d^{2} A}{d x^{2}}=\frac{(-r-4 x)}{\sqrt{r^{2}-x^{2}}}+\frac{\left(r^{2}-r x-2 x^{2}\right) x}{\left(r^{2}-x^{2}\right)^{3 / 2}}$
[differentiating both sides w.r.t. x]
$\Rightarrow\left(\frac{d^{2} A}{d x^{2}}\right)_{x=\frac{r}{2}}=-2 \sqrt{3}<0$
Thus, A is maximum when $x=\frac{r}{2}$.
$\therefore B D=\sqrt{r^{2}-x^{2}}=\sqrt{r^{2}-\frac{r^{2}}{4}} \Rightarrow B D=\frac{\sqrt{3} r}{2}$
In right angled $\triangle O D B, \tan \theta=\frac{B D}{O D}$

$$
\Rightarrow \tan \theta=\frac{\frac{\sqrt{3} r}{2}}{\frac{r}{2}}=\sqrt{3} \Rightarrow \theta=60^{\circ}
$$

$$
\therefore \angle B A C=\theta=60^{\circ}
$$

But $A B=A C$. Therefore, $\angle B=\angle C=60^{\circ}$.
Thus, we obtain $\angle A=\angle B=\angle C=60^{\circ}$.
Hence, A is maximum when $A B C$ is an equilateral triangle.
34. If $x^{y}-y^{x}=a^{b}$, find $\frac{d y}{d x}$.

Given, $\quad x^{y}-y^{x}=a^{b}$
Let $x^{y}=u$ and $y^{x}=v$
Then, $\quad u-v=a^{b} \Rightarrow \frac{d u}{d x}-\frac{d v}{d x}=0$
Now, $\quad u=x^{y} \Rightarrow \log u=y \log x$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\frac{y}{x}+\log x \frac{d y}{d x} \Rightarrow \frac{d u}{d x}=y \cdot x^{y-1}+x^{y} \cdot \log x \frac{d y}{d x}$
and $v=y^{x} \Rightarrow \log v=x \log y$
$\Rightarrow \frac{1}{v} \cdot \frac{d v}{d x}=\frac{x}{y} \frac{d y}{d x}+\log y \Rightarrow \frac{d v}{d x}=x y^{x-1} \frac{d y}{d x}+y^{x} \log y$
Now, Eq. (i) becomes,

$$
y \cdot x^{y-1}+x^{y} \cdot \log x \frac{d y}{d x}-x y^{x-1} \frac{d y}{d x}-y^{x} \log y=0
$$

$$
\Rightarrow \frac{d y}{d x}\left(x^{y} \log x-x y^{x-1}\right)=y^{x} \log y-y \cdot x^{y-1} \Rightarrow \frac{d y}{d x}=\frac{y^{x} \cdot \log y-y \cdot x^{y-1}}{x^{y} \cdot \log x-x \cdot y^{x-1}}
$$

35. Find whether the following function is differentiable at $\mathrm{x}=1$ and $\mathrm{x}=2$ or not.
$f(x)=\left\{\begin{array}{cc}x, & x<1 \\ 2-x & , 1 \leq x \leq 2 \\ -2+3 x-x^{2} & , x>2\end{array}\right.$
Given, $f(x)=\left\{\begin{array}{cc}x, & x<1 \\ 2-x, & 1 \leq x \leq 2 \\ -2+3 x-x^{2}, & x>2\end{array}\right.$
Differentiability at $x=1$

$$
\begin{aligned}
\mathrm{LHD} & =\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{(1-h)-[2-(1)]}{-h}=\lim _{h \rightarrow 0} \frac{-h}{-h}=1 \\
\mathrm{RHD} & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2-(1+h)-(2-1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h}=-1
\end{aligned}
$$

$\because \quad L H D \neq R H D$
So, $f(x)$ is not differentiable at $x=1$.

Differentiability at $x=2$

$$
\begin{aligned}
& \text { LHD }=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h} \\
&=\lim _{h \rightarrow 0} \frac{2-(2-h)-(2-2)}{-h}=\lim _{h \rightarrow 0} \frac{h}{-h}=-1 \\
& \text { RHD }=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
&=\lim _{h \rightarrow 0} \frac{-2+3(2+h)-(2+h)^{2}-(2-2)}{h} \\
&=\lim _{h \rightarrow 0} \frac{-2+6+3 h-\left(4+h^{2}+4 h\right)-0}{h} \\
&=\lim _{h \rightarrow 0} \frac{-h^{2}-h}{h}=\lim _{h \rightarrow 0} \frac{-h(h+1)}{h}=-(0+1)=-1
\end{aligned}
$$

\because LHD = RHD
So, $f(x)$ is differentiable at $x=2$.
Hence, $f(x)$ is not differentiable at $x=1$, but it differentiable at $x=2$.

SECTION - V
 Q uestions 36 to 38 carry 5 marks each.

36. Find the foot of the perpendicular drawn from the point $(-1,3,-6)$ to the plane $2 x+y-2 z+5=$ 0 . Also, find the equation and length of the perpendicular.
Let the foot of perpendicular be $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right) d r^{\prime}$ s of $\overrightarrow{\mathrm{AP}}$ are $\left\langle x_{1}+1, y_{1}-3, z_{1}+6\right\rangle$
Direction ratios normal to plane (1) are $\langle 2,1,-2\rangle$

$$
\begin{aligned}
& \text { Since AP } \| \vec{n} \\
& \Rightarrow \frac{x_{1}+1}{2}=\frac{y_{1}-3}{1}=\frac{z_{1}+6}{-2}=\lambda \\
& \Rightarrow x_{1}=2 \lambda-1, y_{1}=\lambda+3, z_{1}=-2 \lambda-6
\end{aligned}
$$

Putting in equation of plane:

$$
\begin{gathered}
2 x_{1}+y_{1}-2 z_{1}+5=0 \\
2(2 \lambda-1)+\lambda+3-2(-2 \lambda-6)+5=0 \Rightarrow 9 \lambda+18=0 \Rightarrow \lambda=-2
\end{gathered}
$$

$\therefore x_{1}=-5, y_{1}=1, z_{1}=-2$
Hence foot of perpendicular is $\mathrm{P}(-5,1,-1)$.
Since AP $\| \vec{n}$

$$
\text { Length of } \mathrm{AP}=\sqrt{(-5+1)^{2}+(1-3)^{2}+(-2+6)^{2}}=6 \text { units }
$$

\therefore Equation of AP is $\frac{x-(-1)}{2}=\frac{y-3}{1}=\frac{z+6}{-2} \Rightarrow \frac{x+1}{2}=\frac{y-3}{1}=\frac{z+6}{-2}$
37. Solve the LPP graphically minimize, $Z=30 x-30 y+1800$ subject to constraints $x+y \leq 30, x \leq$ $15, \mathrm{y} \leq 20, \mathrm{x}+\mathrm{y} \geq 15 ; \mathrm{x}, \mathrm{y} \geq 0$.

Minimise $Z=30 x-30 y+1800$
Subject to $x+y \leq 30$
$x \leq 15$
$y \leq 20$
$x+y \geq 15$
and, $x \geq 0, y \geq 0$
To solve this LPP graphically, we first convert inequations into equations and then draw the corresponding lines. The feasible region of the LPP is shaded in given figure The coordinates of the corner points of the feasible region $A_{2} P Q B_{3} B_{2}$ are $A_{2}(15,0), P(15,15), Q(10,20)$, $B_{3}(0,20)$ and $B_{2}(0,15)$. These points have been obtained by solving the corresponding intersecting lines simultaneously.
The values of the objective function at the points of the
 feasible region are given in the following table.

Point (x, y)	Value of the objective function $Z=30 x-30 y+1800$
$A_{2}(15,0)$	$Z=30 \times 15-30 \times 0+1800=2250$
$B(15,15)$	$Z=30 \times 15-30 \times 15+1800=1800$
$Q(10,20)$	$Z=30 \times 10-30 \times 20+1800=1500$
$B_{3}(0,20)$	$Z=30 \times 0-30 \times 20+1800=1200$
$B_{2}(0,15)$	$Z=30 \times 0-30 \times 15+1800=1350$

Clearly, Z is minimum at $x=0, y=20$ and the minimum value of Z is 1200 .
38. If $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1\end{array}\right]$, then find A^{-1}. Using A^{-1}, solve the given system of linear equations: $x+3 y+4 z=8,2 x+y+2 z=5$ and $5 x+y+z=7$.

We have, $x+3 y+4 z=8$,

$$
2 x+y+2 z=5
$$

and $5 x+y+z=7$
The above system of simultaneous linear equations can be written in matrix form as

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2 \\
5 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
5 \\
7
\end{array}\right]} \\
\text { or, } A X=B \text {, where } A=\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2 \\
5 & 1 & 1
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
8 \\
5 \\
7
\end{array}\right]
\end{gathered}
$$

Now, $|A|=\left|\begin{array}{lll}1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1\end{array}\right|=1(1-2)-3(2-10)+4(2-5)$

$$
=-1+24-12=11 \neq 0
$$

So, A^{-1} exists.
Let $C_{i j}$ be the cofactor of $a_{i j}$ in $A=\left[a_{i j}\right]$ Then,
$C_{11}=-1, C_{12}=8, C_{13}=-3, C_{21}=1, C_{22}=-19, C_{23}=14$, $C_{31}=2, C_{32}=6$ and $C_{33}=-5$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-1 & 8 & -3 \\ 1 & -19 & 14 \\ 2 & 6 & -5\end{array}\right]^{\top}=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 8 & -19 & 6 \\ -3 & 14 & -5\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{|A|}$ adj $A=\frac{1}{11}\left[\begin{array}{ccc}-1 & 1 & 2 \\ 8 & -19 & 6 \\ -3 & 14 & -5\end{array}\right]$
Thus, the solution of the system of equations is given by

$$
\begin{aligned}
X & =A^{-1} B=\frac{1}{11}\left[\begin{array}{ccc}
-1 & 1 & 2 \\
8 & -19 & 6 \\
-3 & 14 & -5
\end{array}\right]\left[\begin{array}{l}
8 \\
5 \\
7
\end{array}\right] \\
& =\frac{1}{11}\left[\begin{array}{ccc}
-8 & +5 & +14 \\
64 & -95 & +42 \\
-24+70 & -35
\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}
11 \\
11 \\
11
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \Rightarrow x=1, y=\text { 1and } z=1
\end{aligned}
$$

